Different roles of two gamma-tubulin isotypes in the cytoskeleton of the Antarctic ciliate Euplotes focardii: remodelling of interaction surfaces may enhance microtubule nucleation at low temperature.

نویسندگان

  • Francesca Marziale
  • Sandra Pucciarelli
  • Patrizia Ballarini
  • Ronald Melki
  • Alper Uzun
  • Valentin A Ilyin
  • H W Detrich
  • Cristina Miceli
چکیده

Gamma-tubulin belongs to the tubulin superfamily and plays an essential role in the nucleation of cellular microtubules. In the present study, we report the characterization of gamma-tubulin from the psychrophilic Antarctic ciliate Euplotes focardii. In this organism, gamma-tubulin is encoded by two genes, gamma-T1 and gamma-T2, that produce distinct isotypes. Comparison of the gamma-T1 and gamma-T2 primary sequences to a Euplotesgamma-tubulin consensus, derived from mesophilic (i.e. temperate) congeneric species, revealed the presence of numerous unique amino acid substitutions, particularly in gamma-T2. Structural models of gamma-T1 and gamma-T2, obtained using the 3D structure of human gamma-tubulin as a template, suggest that these substitutions are responsible for conformational and/or polarity differences located: (a) in the regions involved in longitudinal 'plus end' contacts; (b) in the T3 loop that participates in binding GTP; and (c) in the M loop that forms lateral interactions. Relative to gamma-T1, the gamma-T2 gene is amplified by approximately 18-fold in the macronuclear genome and is very strongly transcribed. Using confocal immunofluorescence microscopy, we found that the gamma-tubulins of E. focardii associate throughout the cell cycle with basal bodies of the non-motile dorsal cilia and of all of the cirri of the ventral surface (i.e. adoral membranelles, paraoral membrane, and frontoventral transverse, caudal and marginal cirri). By contrast, only gamma-T2 interacts with the centrosomes of the spindle during micronuclear mitosis. We also established that the gamma-T1 isotype associates only with basal bodies. Our results suggest that gamma-T1 and gamma-T2 perform different functions in the organization of the microtubule cytoskeleton of this protist and are consistent with the hypothesis that gamma-T1 and gamma-T2 have evolved sequence-based structural alterations that facilitate template nucleation of microtubules by the gamma-tubulin ring complex at cold temperatures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity

The α-amylases are endo-acting enzymes that hydrolyze starch by randomly cleaving the 1,4-α-d-glucosidic linkages between the adjacent glucose units in a linear amylose chain. They have significant advantages in a wide range of applications, particularly in the food industry. The eukaryotic α-amylase isolated from the Antarctic ciliated protozoon Euplotes focardii (EfAmy) is an alkaline enzyme,...

متن کامل

Distinct Functional Roles of β-Tubulin Isotypes in Microtubule Arrays of Tetrahymena thermophila, a Model Single-Celled Organism

BACKGROUND The multi-tubulin hypothesis proposes that each tubulin isotype performs a unique role, or subset of roles, in the universe of microtubule function(s). To test this hypothesis, we are investigating the functions of the recently discovered, noncanonical β-like tubulins (BLTs) of the ciliate, Tetrahymena thermophila. Tetrahymena forms 17 distinct microtubular structures whose assembly ...

متن کامل

The Effect of the Crocus Sativus L. Carotenoid, Crocin, on the Polymerization of Microtubules, in Vitro

Objective(s): Crocin, as the main carotenoid of saffron, has shown anti-tumor activity both in vitro and in vivo. Crocin might interact with cellular proteins and modulate their functions, but the exact target of this carotenoid and the other compounds of the saffron have not been discovered yet. Microtubular proteins, as one of the most important proteins inside the cells, have several functio...

متن کامل

Immunocytochemical Study on Microtubule Reorganization in HL-60 Leukemia Cells Undergoing Apoptosis

Background: Microtubules (MT) are important components of cell cytoskeleton and play key roles in cell motility mitosis and meiosis. They are also the targets of several anticancer agents which indicating their importance in maintaining cell viability. Microtubular reorganization contributing to apoptotic morphology occurs in normal and neoplastic cells undergoing apoptosis induced by cytotoxic...

متن کامل

Distinct α- and β-tubulin isotypes are required for the positioning, differentiation and survival of neurons: new support for the ‘multi-tubulin’ hypothesis

Synopsis The many functions of the microtubule cytoskeleton are essential for shaping the development and maintaining the operation of the nervous system. With the recent discovery of congenital neurological disorders that result from mutations in genes that encode different αand β-tubulin isotypes (TUBA1A, TUBB2B, TUBA8 and TUBB3), scientists have a novel paradigm to assess how select perturba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The FEBS journal

دوره 275 21  شماره 

صفحات  -

تاریخ انتشار 2008